NIH_ReSyP - A Reservoir Systems Package Developed at NIH

Dr. S K Jain/M. K. Goel National Institute of Hydrology Roorkee (India) s_k_jain@yahoo.com

Salient Features of NIH_ReSyP

- A number of programs developed for reservoir analysis problems merged to make ReSyP.
- Core in Fortran; forms and chores in Visual BASIC.
- Runs under Windows environment.
- Does not need any specific software or hardware.
- Provides a user-friendly environment.
- Results are presented in tabular and graphical form.
- Online Help is available.
- Results including graphs generated can be used in other applications by cut-copy-paste.
- Data can be prepared in MS-Excel and pasted in input forms or vice-versa.

NIH_Reservoir Systems Package

pillway Regulation

Inflow Estimation

Capacity Computation

Reservoir Sedimentation

Flood Operation

Reservoir Routing

Developed By : Water Resources Systems Division NATIONAL INSTITUTE OF HYDROLOGY Jalvigyan Bhawan Roorkee -247667 (Uttaranchal) India

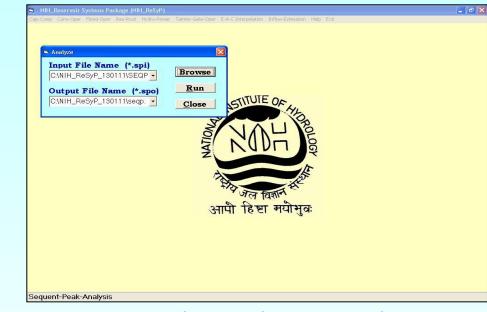
Conservation Operation

HydroPower

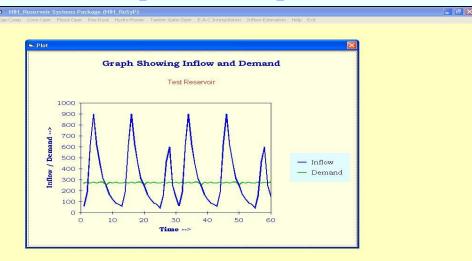
Analysis

Start ReSyP

Quit ReSyP


- > Reservoir capacity estimation using sequent-peak method
- Storage-Yield-Reliability analysis
- > Hydropower analysis
- Operation analysis of a Multi-purpose Multi-reservoir system for conservation purposes
- > Operation analysis of a Multi-purpose Multi-reservoir system for flood control
- > Reservoir sedimentation analysis
- > Probable inflow estimation
- > Reservoir routing
- Estimation of trial Rule Curves for a reservoir
- Interpolation of elevation-area-capacity (EAC) table
- Reservoir inflow estimation using rate of rise method

💶 🗗 🗙 NIH_Reservoir Systems Package (NIH_ReSyP) Cap-Comp Cons-Oper Flood-Oper Res-Rout Hydro-Power Tainter-Gate-Oper E-A-C Interpolation Inflow-Estimation Help Exit Sequent-Peak Analysis Fill Data Form Storage-Yield Analysis Analyze View Input/Output Tabular F1 Graphs of last Analysis Help Using Excel Using MSChart NOITH NSTITUTE OF LOGY जल विज्ञान आपी हिष्टा मयीभुवः


Sample Input-Output of NIH_ReSyP

Title of the Problem	Sample Data for Sequent Pe
Name of Reservoir	Test Reservoir
Starting Year	1935
Starting Month	1
Number of Months for Analysis	30
Demand Vary Each Year	Y
Factor for Coverting Inflows to 'Cu. m'	0.1
Factor for Converting Demands to 'Cu. m'	0.1
Inflow and Demand	Values

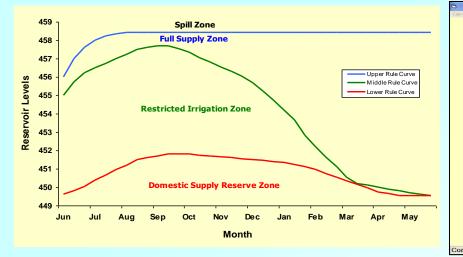
Sequent-Peak-Analysis

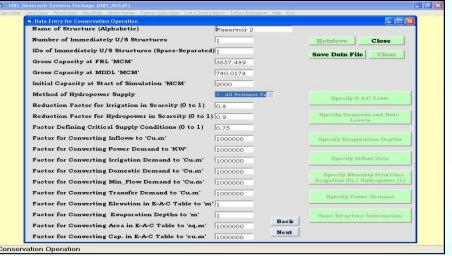
Sample Data Input Form

Sequent-Peak-Analysis

Sample Graphical Output

Sample Analysis Window yatems Package (NEL ResyP) Pload-Oper ResRout Hyder-Power Tanker-Gate-Oper E-A-C Interpolation Inflow/Estimation Help Esit

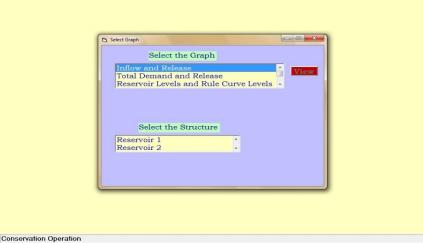

		CAPACITY COMP Test Reservoi		A RESERVOIR		
Period	Stor(T)	Inflow(T)	Demand(T)	Stor(T+1)	Cum_(Inf-Dem)	
1	.00	60.05	270.02	209.97	-209.97	
2	209.97	186.05	279.02	302.94	-302.94	
3	302.94	620.05	270.02	.00	47.09	
4	.00	900.05	279.00	.00	668.14	
5	.00	620.05	270.00	.00	1018.19	
6	.00	450.00	279.00	.00	1189.19	
7	. ŏŏ	310.00	279.00	.00	1220.19	
89	.00	248.00	252.00	4.00	1216.19	
ġ.	4.00	168.00	279.00	115.00	1105.19	
10	115.00	124.00	270.00	261.00	959.19	
11	261.00	90.00	279.00	450.00	770.19	
12	450.00	77.50	270.00	642.50	577.69	
13	642.50	60.00	270.02	852.52	367.67	
14	852.52	186.00	279.02	945.54	274.65	
15	945.54	620.00	270.02	595.56	624.63	
16	595.56	900.00	279.00	.00	1245.63	
17	.00	620.00	270.00	.00	1595.63	
18	.00	450.00	279.00	.00	1766.63	
19	.00	310.00	279.00	.00	1797.63	
20	.00	248.00	252.00	4.00	1793.63	
21	4.00	168.00	279.00	115.00	1682.63	
22	115.00	124.00	270.00	261.00	1536.63	
21 22 23	261.00	90.00	279.00	450.00	1347.63	
24	450.00	77.50	270.00	642.50	1155.13	
25	642.50	45.00	270.02	867.52	930.11	
26	867.52	155.00	279.02	991.54	806.09	
27	991.54	465.00	270.02	796.56	1001.07	
28	796.56	600.00	279.00	475.56	1322.07	
					1	
c						


Sample Tabular Output

Conservation Operation of a Multi-reservoir System

- Operates a multi-reservoir system for D&I demands, irrigation, hydropower, and minimum flow requirements.
- Any configuration of storage & diversion structures can be simulated.
- > Ten-daily or Monthly time steps can be used.
- Interbasin water transfer can be simulated.
- Rule-curves based operation is followed. ReSyP helps fine-tune operation policy of a reservoir system.
- > Reliabilities/ resilience/ vulnerability of structures are computed.
- User-controlled detailed working table is generated for all dams/ diversions.

Conservation Operation of a Multi-reservoir System



Rule-curve based operation

Input Data Form

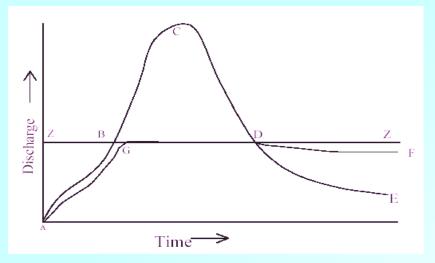
	Reservoir Systems Package (NIH_ReSyP)		💷 🗗 🗙			
Cap-Comp	Cons-Oper Flood-Oper Res-Rout Hydro-Power Tainber-Gate-Oper E-A-C-Interp Data Entry for Conservation Operation	volation Inflow-Estimation Help Exit		Cap-Comp Cons-Oper Flood-Ope	r Res-Rout Hydro-Powe	er Tainter-Gate-Oper E-A-C Interpolation Inflow-Estima
	Installed Capacity of Power Plants 'MW'	90	Retrieve Close			
	Tail Water Elevation 'm'	370	Save Data File Clear			
	Minimum Reservoir Level for Power Generation 'm'	403.55			🔁 Select Graph	le l
	Efficiency of Power Plants (%)	0.9				Select the Graph
	Number of Data Points in E-A-C Table	9	Specify E-A-C Table			nd Release
	Details of Results Required (0 - Not Required , 1 - Yearly , 2 - Periodwise)	2	Specify Demands and Rule			ir Levels and Rule Curve Levels
	ID of D/S Structure Whose Demands are to be Satsified from Current Structure	0	Levels			
	Return Flow from Irrigation Release (%)	0	Specify Evaporation Depths		Sel	lect the Structure
	Does this Structure Transfer Water to other Structures/Basin	Yes	Specify Inflow Data		Reservoi	ir 1 *
	ID of Structure from Which Water is Received	0	Specify Monthly Priorities		Reservoi	if 2 *
	Enroute Diversion/Conveyance Loss (%)	0	Irrigation (0) / Hydropower (1)			
	Inflow Data Available (1)/Computed (2)	1	Specify Power Demand			
	Specify Structure ID for Computing Inflows for Present Structure	Back	Save Structure Information			
	Inflow Modifying Factor	Next				
Conser	vation Operation			Conservation Operation		

Input data Form

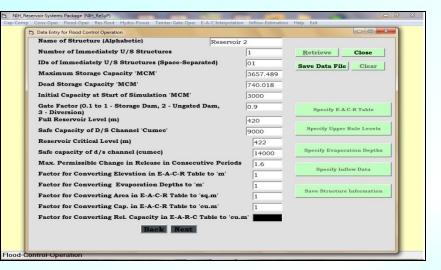
Option for Graphical Output

Conservation Operation of a Multi-reservoir System – Reservoir Working Tables

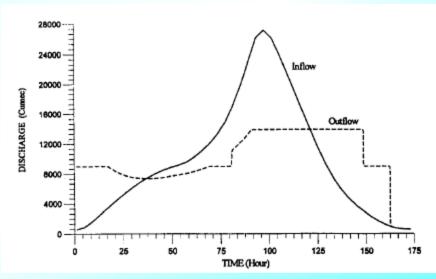
At this n	ode, WS +	<pre>Min_flo</pre>	w only		u plan	t											
Monthly p 0		0 (0 mean		0 0				0	0								
A link di																	
Water sup				ie (m m3) 16 11.53	27.2	2 17 07	10 15	2 31	11 07	11 07							
Link dema					27.2	11.07	10.15	2. 31	11.07	11.07							
10.0	10.5 1	.9.	6	.8 8.0	18.	8 11.8	7.0	1.6	7.7	7.7							
Irrigatio				e (m m3) 44 14.37	33.0	2 21 27	12 65	2 87	13 80	13 80							
Irrigatio					55.5	2 21.27	12.03	2.0/	15.60	15.00							
4.08	4.28 .	78 .2	6.	32 3.24			2.85	. 65	3.11	3.11							
Minimum q				from this 00 11.00			00	11 00	11 00	11 00							
11.00 1	1.00 11.	00 11.0		00 11.00			.00	11.00	11.00	11.00							
YYYY-Mn-D																Upr_Rul	
	m m3	m m3	m m3	m m3	m m3	m m3	m m3	m m3	m m3	MKwh	m m3	m m3	m m3	m	m	m	
1981-06-0	350.0	36.3	20.0	17.6	.0	35.7	.0	11.5	22.5C	. 2	22.5	. OL	0.	358.50	364.00	371.00	Н
1981-07-0	343.8	302.5		41.6	.0	58.3	.0		27.2C	.3	27.2		0.		364.00		
1981-08-0	589.5	1482.8		26.1	.0	36.5	21.3	17.1	79.7	1.3	53.6		0.		364.00	371.00	
1981-09-0 1981-10-0	1965.7 2077.4	190.0	20.0	15.5 3.5	.0 .0	21.7 15.9	12.6	10.1 2.3	47.4 21.8	1.1	31.9 18.2	7.0 1.6	0. 0.	370.38 370.41	364.00 364.00	371.00 371.00	
1981-11-0	2083.0		14.6	16.9	:0	34.7	13.8	11.1	62.7	1.6	45.8	7.7	ö.	370.14	364.00	371.00	
1981-12-0	2026.9		13.3	16.9	.ŏ	34.7	13.8	11.1	62.7	1.6	45.8	7.7	ŏ.	369.79	364.00	371.00	
1982-01-0	1957.3		14.4	22.2	.0	42.1	18.1	14.5	78.8	1.9	56.6	10.0	ō.		364.00	371.00	
1982-02-0	1889.7		18.0	23.3	.0	43.6	19.0	15.2	82.1	1.9	58.8	10.5	0.		364.00	371.00	
1982-03-0	1828.7		34.3	4.2	.0	16.9	3.5	2.8	23.9	.6	19.7	1.9	0.	368.92	364.00	371.00	н
1982-04-0	1782.9		57.5	1.4	.0	13.0	1.1	. 9	15.3	.4	13.9	.6	0.	368.56		371.00	
1982-05-0	1710.8	5.8			.0	13.5	1.4	1.2	16.4	.4	14.6		0.	368.11	364.00	371.00	н
1982		2210.	319.	190.9	0.	367.	131.8	125.	540.	12.	409.	78.	0.				

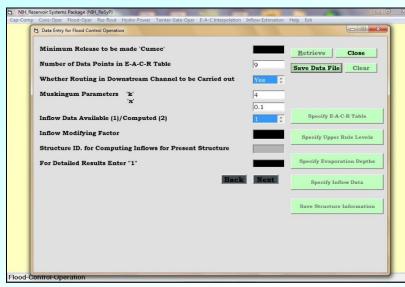

Systems studied: Sabarmati, Machhu, Bargi, Vellar, Peninsular Part of River Interlinking Scheme, Ken-Betwa Interlinking project, ...

- Publications: Jain, S.K., Goel, M.K. and Agarwal, P.K. (1998). "Reservoir operation studies for Sabarmati system, India", J of Water Res Plan and Manag, ASCE, 124(1), 31-38.
- Jain, S.K., Reddy, NSRK, and Chaube, U.C. (2005). "Analysis of a Large Inter-basin Water Transfer System in India." Hydrological Sciences J, IAHS, 50(1), 125-137.
- Jain, S. K., and Bhunya, P. K. (2008). "Reliability, resilience, and vulnerability of a multipurpose storage reservoir." Hydrological Sciences J, IAHS, 53(2), 434-447.
- Jain, S.K. (2010). Investigating the behavior of statistical indices for performance assessment of a reservoir. Journal of Hydrology, 391, 90-96.


Flood Operation of a Multi-reservoir System

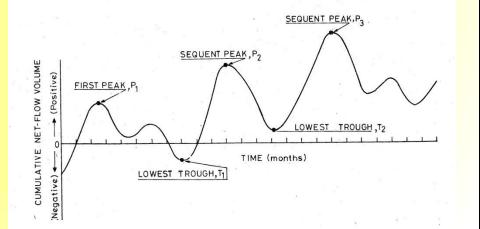
- For operation analysis of a multi-reservoir system for flood control.
- Any configuration of storage & diversion structures can be simulated.
- > Time steps Multi-hours.
- For each structure, inflow hydrograph + flow from intermediate catchment is needed.
- Each reservoir is operated so that incoming flood is passed safely with least d/s flooding while ensuring safety of dam.
- Several methods are available for channel routing.
- User-controlled detailed working table is generated for all dams/ diversions.


Flood Operation of a Multi-reservoir System



Flood control operation

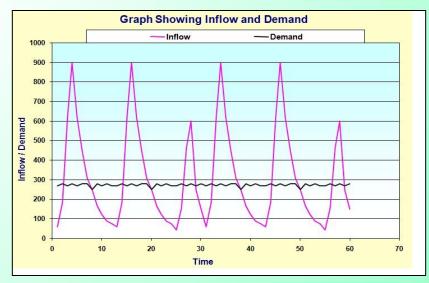
Input Data Form



Input data Form

Graphical Output

Capacity Computation Using Sequent Peak Method



Title of the Problem	Sample Data for Sequent Pe
Name of Reservoir	Test Reservoir
Starting Year	1935
Starting Month	1
Number of Months for Analysis	30
Demand Vary Each Year	Y
Factor for Coverting Inflows to 'Cu. m'	0.1
Factor for Converting Demands to 'Cu. m'	0.1
Inflow and Deman	d Values
Retrieve Save	<u>Clear</u> Clos <u>e</u>

Sequent Peak Algorithm

Input Data Form

, , , , , , , , , , , , , , , , , , , ,	eak Algorithm			
Title of the l	1	Press F1 for Paste		UTATIO
	Month-Year	Inflow	Demand	
Name of Res		600.5	2700.2	
Starting Yea	Feb-1935	1860.5	2790.2	
-	Mar-1935	6200.5	2700.2	_
Starting Mon	Apr-1935	9000.5	2790	_
	May-1935	6200.5	2700	
Number of M	Jun-1935	4500	2790	
Demand Var	Jul-1935	3100	2790	_
	Aug-1935	2480	2520	
Factor for C	Sep-1935	1680	2790	
B	Oct-1935	1240	2700	
Factor for C	Nov-1935	900	2790	
	Dec-1935	775	2700	-
		Go Back	1	
Retrieve	Save		Clear	Clos

Graphical Output

Data Form for Tabular Data

Hydropower Analysis

Firm Power Determination

- Maximum possible firm power depends upon the site conditions, hydrology of the area, type of load, and features of power plant.
- An optimization algorithm is used to determine firm power from a reservoir.
- SLOP is used for simulation of reservoir operation. Computations are repeated till convergence is attained.
- **Hydropower Simulation**
- Knowing the given power demand, the reservoir simulation is carried out to find out power generation and reliabilities.

Data Entry for Storage Yield Analysis		
Title of the Problem	Sample Data for Storage Yiel	
Name of Reservoir	Test Reservoir	E-A-C Table
Starting Year	1935	
Starting Month	6 •	Evaporation Depths
Number of Months for Analysis	324	Monthly Yield Factors
Dead Storage Capacity (MCM)	119.287	Inflow
Initial Reservoir Storage	200	
YIELD Known and STORAGE Calculated	Y ÷	
Specify Annual Yield (MCM)	1200	
Specify Storage (MCM)	1200	
No. of Data Points in E-A-C Table	12	
Required Reliability (0-1)	0.9	
Evaporation Accuracy (0.00001 - 0.1)	0.001	
Overall Accuracy (0.00001 - 0.1)	0.0001	
Factor for Coverting Inflows to 'Cu. m'	1000000	Retrieve
Factor for Converting Evaporation to 'm'	1	Save
Factor for Converting Elevation to 'm'	1	
Factor for Converting Area to 'Sq. m'	1000000	Clear
Factor for Converting Capacity to 'Cu. m'	1000000	Close

Opening data form for storage-yield analysis module

Sample Output file Generated

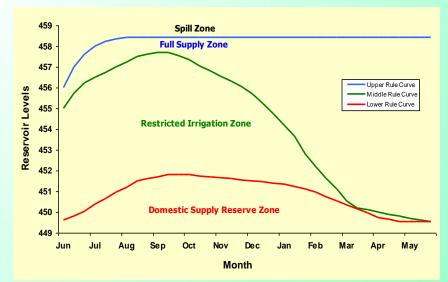
Reservoir Storage Required = 2812.22 M Cum, Number of Failures = 125 Reliability Achieved = .61 Reservoir Monthly Working Table									
Month	Ini_Sto	Inflow	Demand	Release	Evap	End_Sto			
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{r}$	$\begin{array}{r} 13.540\\ 333.790\\ 172.370\\ 263.220\\ 45.290\\ 12.310\\ 14.300\\ .470\\ .890\\ .860\\ .500\\ .270\end{array}$	108.000 72.000 72.000 68.400 111.600 109.680 109.680 109.680 109.680 109.680 109.680 109.680	88.150 72.000 72.000 68.400 111.600 109.680 109.680 109.680 109.680 109.680 .000 .000	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c}\\ 119.29*\\ 374.96\\ 466.35\\ 649.09\\ 569.27\\ 459.61\\ 353.73\\ 236.61\\ 122.14\\ 118.87*\\ 114.24*\\ 108.27* \end{array}$			
13 14 15	108.27 104.53 256.98	.270 .460 229.220 630.410	109.000 108.000 72.000 72.000	.000 .000 72.000 72.000	4.202 4.769 11.207	108.27* 104.53* 256.98 804.19			

Title of the Problem	Rule Curve Derivation for Ba	
Name of Reservoir	Bargi	
Method of Supply through Power Plant	Irr Rel Pass through Plant 拿	E-A-C Table
Minimum Drawdown Level (m)	403.55	Evaporation Depth
Full Reservoir Level (m)	422.76	Inflow Data
No. of Data Points in E-A-C Table	9	Demand Data
Factor for Coverting Inflows to 'Cu. m'	100000	Demand Data
Factor for Coverting Irr. Demand to 'Cu. m'	100000	
Factor for Coverting Power Demand to 'Cu. m'	100000	
Factor for Converting Evaporation to 'm'	1	
Factor for Converting Elevation to 'm'	1	
Factor for Converting Area to 'Sq. m'	1	
Factor for Converting Capacity to 'Cu. m'	1	Retrieve
Maximum Capacity of the Power Plant (MW)	90.0	Save
Tail Water Level (m)	370.00	<u>C</u> lear
Minimum Reservoir Level for Power Plant (m)	403.55	Close
Efficiency of Power Plant	0.90	
High Priority to	0 - Irrigation	

Input Data Form

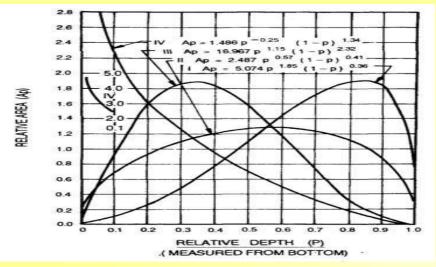
Sample Output file Generated

RULE CURVE DERIVATION FOR A RESERVOIRUpper Rule Curve Levels (Jan...Dec)416.59413.70411.26408.55406.02422.76422.76422.76422.76422.76


Irrigation Rule Curve Levels (Jan...Dec) 416.59 413.70 411.26 408.55 406.02 415.81 418.13 420.44 422.76 422.76 420.97 419.17

Hydropower Rule Curve Levels (Jan...Dec) 413.66 412.57 411.26 408.55 406.02 403.55 407.93 412.31 416.69 418.50 416.54 415.22

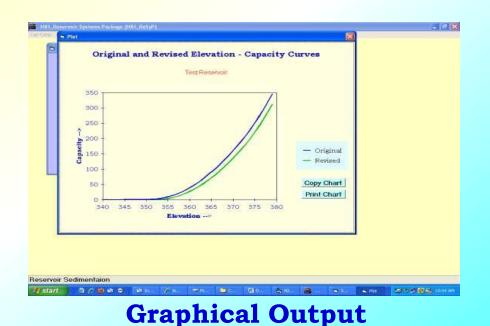
Domestic Supply Rule Curve Levels (Jan...Dec) 403.76 403.79 403.82 403.78 403.68 403.55 403.58 403.61 403.64 403.67 403.70 403.73


litle of the Prol		(Press F1	for Paste)		- VATION F	
Name of Reserv		100000000000000000000000000000000000000	eliable Inflo			
Method of Supp		50%	75%	90%	Plant 💲	E-A-C Table
linimum Draw	January	41.75	26.95	18.25		Evaporation Depth
ull Reservoir I	February	27.01	16.2	10.39		Inflow Data
lo. of Data Poir	March	16.15	9.86	6.13		Innow Data
actor for Cove	April	7.71	4.53	2.79		Demand Data
actor for Cove	May	3.27	1.87	1.08		
actor for Cove	Jun	42.91	12.69	4.24		
actor for Conv	July	1264.77	699.49	368.3		
actor for Conv	August	3191.52	2375.18	1650.75		
actor for Conv	September	1526.87	888.49	476.86		
actor for Conv	October	323.68	174.07	93.06		Retrieve
faximum Capa	November	94.45	60.91	38.78		Save
ail Water Leve	December	52.37	35.5	25.48		Clear
linimum Resei		Submit	Values			Close

Data Form for Reliable flows

Graphical Output

Reservoir Sedimentation Analysis



Empirical Area Reduction Method

			Zero Ele					
Elev	Ori Ar	Ori Cap	Rel Dep	Vation A p	- 351.	.790 .Tot SCap	Rev Ar	Rev Cap
340.00	001 AC	.000	.000	0000	.004	. 000	. 000	.000
341.00	.007	.005	.025	.3006	.007	.005	.000	.000
342.00	.012	.015	.050	.4415	.012	.015	.000	.000
343.00	.018	.030	.075	.5503	.018	.030	.000	.000
344.00	.027	.052	.100	.6411	.027	.052	.000	.000
345.00	.080	.103	.125	.7197	.080	.103	.000	.000
346.00	.044	.164	.150	.7891	.044	.164	.000	.000
347.00	.055	.214	.175	.8510	.055	.214	.000	.000
348.00	.076	.279	.200	.9068	.076	.279	.000	.000
349.00	.203	.413	.225	.9573	.203	.413	.000	.000
350.00	.470	.741	.250	1.0029	.470	.741	.000	.000
351.00	.748	1.344	.275	1.0443	.748	1.344	.000	.000
351.79	1.094	2,102	.295	1.0742	1.094	2,102	.000	.000
352.00	1.186	2.303	.300	1.0817	1,102	2.332	.084	.000
353.00	1,930	3.846	.325	1.1155	1,136	3,451	.794	.395
354.00	2.876	6.233	.350	1.1457	1,167	4,602	1,709	1.631
355.00	3,900	9.608	.375	1.1727	1.194	5.783	2.706	3.825
356.00	4.456	13,783	400	1,1964	1,219	6,989	3.237	6.794
357.00	5.447	18.726	.425	1.2171	1.240	8.218	4.207	10.508
358.00	6.302	24.596	.450	1.2347	1.257	9.467	5.045	15.129
359.00	7,420	31,449	.475	1.2493	1.272	10.732	6.148	20.717
360.00	8.264	39.287	.500	1.2609	1.284	12.010	6.980	27.277
361.00	9,111	47,971	.525	1.2694	1.293	13.299	7.818	34.672
362.00	9.877	57.463	.550	1.2750	1.298	14.594	8.579	42.869
363.00	10,600	67.699	. 575	1.2774	1.301	15.894	9.299	51,805
364.00	11,415	78,704	600	1.2766	1.300	17,195	10,115	61.509
365.00	12.036	90.428	.625	1.2726	1.296	18.493	10.740	71.935
366.00	12.974	102.930	.650	1.2650	1.288	19.785	11.686	83.145
367.00	13.994	116.411	.675	1.2539	1.277	21.068	12.717	95.343
368.00	14.693	130.753	.700	1.2388	1.262	22.337	13.431	108.416
369.00	15.334	145.766	.725	1.2195	1.242	23.589	14.092	122.177
370.00	15.879	161.371	.750	1.1957	1.218	24.819	14.661	136.552
371.00	16.419	177.520	.775	1.1667	1.188	26.022	15.231	151.498
372.00	17.094	194.275	.800	1.1320	1.153	27.192	15.941	167.083
373.00	18.211	211.924	.825	1.0907	1.111	28.324	17.100	183.600
374.00	19.463	230.758	.850	1.0415	1.061	29.410	18.402	201.348
375.00	21.187	251.077	.875	.9825	1.001	30.440	20.186	220.637
376.00	22.413	272.874	.900	.9112	.928	31.404	21.485	241.470
377.00	23.493	295.825	.925	.8225	.838	32.287	22.655	263.538
378.00	24.721	319.929	.950	.7072	.720	33.065	24.001	286.864
379.00	25.899	345.237	.975	.5402	.550	33.698	25.349	311.539
380.00	27.237	371.802	1.000	.0000	.000	33.882	27.237	337.920

Input Data Form

Tabular Output

SUMMARY

- We present a package for various analyses pertaining to a (system of) reservoirs.
- > A Windows based GUI and input menu screens have been developed for easier use.
- Tabular & graphical options with inter-portability of data from MS-Excel.
- Software can be used to develop conservation and flood control policy for a system of reservoirs. It can also consider inter-basin water transfer.
- Software is continuously up-dated with regular annual trainings and is nominally priced.
- Looking for feedbacks to improve.

Hydrology and Water Resources Information System for India

www.nih.ernet.in/rbis/rbis

Hydrology and Water Resources Information System for India

Topography	Water Facts	River Basins	Water Resources Utilisation	Climate	Thematic I
Organisation	vs		22° E 1 40° 1 0	1 ² 4 52 ⁴	
National Wat	ter Policy	-	BASIN MAP OF	INDIA	x -
Constitution	al Provísions	2.94		Lituiniti	U
Treatles and	Tríbunal Awards	a de la companya de	BI	CONTRACTOR OF	
⊙ vedic Hydrol	logy	- /	ALETAS PEPAS	2000	3-
Mythologies		S	B10 B2a	825	
On-line ET C	omputations			Str. W.	
® Fundamental	ls On-line		B18 B13 B8 B7 B6	signer to from	-
A REAL	INTE OF THE		83 • 816	BAY OF	
			BIAN B4	BENGAL	bar -
Water Resource	क विष् हिंश मयेमुख es System Division		EA Contraction of the second s		
Jalvigyan Bhawan,	tute of Hydrology , Roorkee - 247 667, India		B177		· · · ·
	t@nih.ernet.in	18			
			INDIAN OCEAN		0

Print

Note: For international / state boundaries and coastline, authoritative Survey of India maps may be referred to